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pyridine-aldehyde ligands and their catalytic activity
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Abstract

Rhodium(I) carbonyl complexes [Rh(CO)2ClL] (1) where L = Py-2-CHO (a), Py-3-CHO (b) and Py-4-CHO (c) have been synthesized
and characterized by elemental analyses, IR,1H and13C NMR spectroscopy. The complexes1 undergo oxidative addition reactions with
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ifferent types of electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to yield [Rh(CO)(COCH3)ClIL] ( 2), [Rh(CO)(COC2H5)ClIL] ( 3),
Rh(CO)(COCH2C6H5)Cl2L] (4) and [Rh(CO)ClI2L] (5) complexes, respectively. The kinetic study of the complexes1 with CH3I reveals a
wo-stage kinetics and the second-stage reactions are faster than that of the first stage by about 80–100 times. The rate of reac1a is
igher than that of1b and1c. The catalytic activity of complexes1 in carbonylation of methanol, in general, is higher (TON 800 – 1250)

hat of the well-known species [Rh(CO)2I2]− (TON 650).
2004 Elsevier B.V. All rights reserved.
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. Introduction

The oxidative addition (OA) reaction is of great impor-
ance in inorganic and organometallic chemistry because of
heir application in carbonylation of alcohols, hydroformyla-
ion of alkenes, etc.[1–6]. The most representative example
s the carbonylation of methanol to acetic acid[7–12]where
he OA reaction of CH3I with cis-[Rh(CO)2I2]− is the rate-
etermining step. Nucleophilicity on the metal center plays
n important role on the rate of OA reaction which can be

ncreased by increasing electron density on the metal cen-
er. Attempts are being made to modify the existing indus-
rial catalytic species [Rh(CO)2I2]− for the enhancement of
ts activity by introducing electron-donating ligands[13–18].
iterature survey reveals that rhodium(I) complexes contain-

ng Py-2-CHO ligand have been used as active catalyst for the

∗ Corresponding author. Tel.: +91 376 2370081/2370147;
ax: +91 376 2370011.

E-mail address:dipakkrdutta@yahoo.com (D.K. Dutta).

transfer of hydrogen from isopropanol to acetophenone[19].
As a part of our work[20–25], i.e. the effects of different type
of ligands on rhodium-catalyzed carbonylation of metha
we report here the synthesis of rhodium(I) complexes
taining Py-2-CHO, Py-3-CHO and Py-4-CHO ligands
their oxidative reactivity towards different electrophiles s
as CH3I, C2H5I, C6H5CH2Cl and I2. The kinetic study of OA
reactions of complexes1a–1cwith CH3I and the catalytic ac
tivity of the complexes on the carbonylation of methanol
also evaluated.

2. Experimental

All the solvents used were distilled under N2 prior to use
Elemental analyses were done on a Perkin-Elmer 2400
mental analyzer. IR spectra (4000–400 cm−1) were recorde
using a Perkin-Elmer 2000 spectrophotometer in CHCl3 and
KBr discs. 1H and 13C NMR spectra were recorded on
Bruker DPX-300 MHz spectrometer, and the1H and 13C
381-1169/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.molcata.2004.07.018
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chemical shifts are quoted relative to SiMe4 as an internal
standard in CDCl3. The carbonylation of methanol was car-
ried out in a 150-cm3 Teflon-coated pressure reactor (HR-100
Berghof, Germany) fitted with a pressure gauge and the re-
action products were analyzed by GC (Chemito 8510, FID).
RhCl3·3H2O was purchased from M/S Arrora Matthey Ltd.,
Kolkata. All the ligands were purchased from Aldrich, USA,
and used as received.

2.1. Starting material

[Rh(CO)2Cl]2 was prepared by passing CO gas over
RhCl3·3H2O powder at 100◦C in the presence of water[26].

2.1.1. Synthesis of the complexes [Rh(CO)2ClL] (1), L =
Py-2-CHO (a), Py-3-CHO (b) and Py-4-CHO (c)

[Rh(CO)2Cl]2 (0.0257 mmol) was dissolved in
dichloromethane (10 cm3) and to this 0.0514 mmol of
the respective ligands were added. The reaction mixture was
stirred at room temperature (r.t.) for about 10 min and the
solvent was evaporated under vacuum. The yellowish-red
color compound so obtained was washed with diethyl ether
and stored over silica gel in a desiccator.

Analytical data for the complexes1a–1care as follows.
1a: Yield: 92%; Anal. found (calcd.) for C8H5ClNO3Rh
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lected IR data (CHCl3): 2075 [ν(CO), cm−1], 1710 [ν(COO),
cm−1].

2c: Yield: 95%; Anal. found (calcd.) for C9H8ClINO3Rh
(%): C, 24.33 (24.38); H, 1.75 (1.80); N, 3.17 (3.16); se-
lected IR data (CHCl3): 2077 [ν(CO), cm−1], 1718 [ν(COO),
cm−1].

3a: Yield: 95%; Anal. found (calcd.) for
C10H10ClINO3Rh (%): C, 26.23 (26.26); H, 2.20 (2.19); N,
3.09 (3.06); selected IR data (KBr): 2065 [ν(CO), cm−1],
1703 [ν(COO), cm−1].

3b: Yield: 93%; Anal. found (calcd.) for
C10H10ClINO3Rh (%): C, 26.28 (26.26); H, 2.17 (2.19); N,
3.07 (3.06); selected IR data (KBr): 2072 [ν(CO), cm−1],
1709 [ν(COO), cm−1].

3c: Yield: 95%; Anal. found (calcd.) for
C10H10ClINO3Rh (%): C, 26.22 (26.26); H, 2.22 (2.19); N,
3.02 (3.06); selected IR data (KBr): 2072 [ν(CO), cm−1],
1710 [ν(COO), cm−1].

4a: Yield: 95%; Anal. found (calcd.) for
C15H12Cl2NO3Rh (%): C, 42.11 (42.09); H, 2.85 (2.80); N,
3.26 (3.27); selected IR data (KBr): 2079 [ν(CO), cm−1],
1657 [ν(COO), cm−1].

4b: Yield: 94%; Anal. found (calcd.) for
C15H12Cl2NO3Rh (%): C, 42.14 (42.09); H, 2.82 (2.80); N,
3.22 (3.27); selected IR data (KBr): 2045 [ν(CO), cm−1],
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%): C, 31.83 (31.87); H, 1.61 (1.66); N, 4.60 (4.65); sele
R data (CHCl3): 2088, 2015 [ν(CO), cm−1], 1716 [ν(CHO),
m−1].

1b: Yield: 95%; Anal. found (calcd.) for C8H5ClNO3Rh
%): C, 31.82 (31.87); H, 1.64 (1.66); N, 4.62 (4.65); sele
R data (CHCl3): 2095, 2023 [ν(CO), cm−1], 1714 [ν(CHO),
m−1].

1c: Yield: 96%; Anal. found (calcd.) for C8H5ClNO3Rh
%): C, 31.83 (31.87); H, 1.60 (1.66); N, 4.63 (4.65); sele
R data (CHCl3): 2087, 2012 [ν(CO), cm−1], 1717 [ν(CHO),
m−1].

.1.2. Synthesis of [Rh(CO)(COR)ClXL] (R = CH3, X =
(2); R = C2H5, X = I (3); R = C6H5CH2, X = Cl (4))

[Rh(CO)2ClL] (0.332 mmol) was dissolved
ichloromethane (15 cm3) and RX (5 cm3) (RX = CH3I,
2H5I, C6H5CH2Cl) was added to it. The reaction mixtu
as then stirred at r.t. for about 2, 4 and 6 h for CH3I,
2H5I and C6H5CH2Cl, respectively. The color of th
olution changed from yellowish-red to reddish-brown
he solvent was evaporated under vacuum. The compo
o obtained were washed with diethyl ether and stored
ilica gel in a desiccator.

Analytical data for the complexes2a–2c,3a–3cand4a–4c
re as follows.

2a: Yield: 92%; Anal. found (calcd.) for C9H8ClINO3Rh
%): C, 24.35 (24.38); H, 1.75 (1.80); N, 3.14 (3.16);
ected IR data (CHCl3): 2071 [ν(CO), cm−1], 1709 [ν(COO),
m−1].

2b: Yield 94%; Anal. found (calcd.) for C9H8ClINO3Rh
%): C, 24.31 (24.38); H, 1.72 (1.80); N, 3.11 (3.16);
701 [ν(COO), cm−1].
4c: Yield: 96%; Anal. found (calcd.) fo

15H12Cl2NO3Rh (%): C, 42.12 (42.09); H, 2.84 (2.80);
.232 (3.27); selected IR data (KBr): 2047 [ν(CO), cm−1],
714 [ν(COO), cm−1].

.1.3. Synthesis of [Rh(CO)ClI2L] (5)
[Rh(CO)2ClL] ((0.430 mmol) was dissolved

ichloromethane (15 cm3) and to this solution, 0.510 mm
f I2 was added. The reaction mixture was stirred at r.t
bout 4 h and the solvent was evaporated under vacuum
rown color compound so obtained was washed with die
ther and stored over silica gel in a desiccator.

Analytical data for the complexes5a–5care as follows.
5a: Yield: 95%; Anal. found (calcd.) for C7H5ClI2NO2Rh

%): C, 15.90 (15.95); H, 0.91 (0.95); N, 2.61 (2.66); sele
R data (KBr): 2075 [ν(CO), cm−1], 1707 [ν(CHO), cm−1].

5b: Yield: 93%; Anal. found (calcd.) for C7H5ClI2NO2Rh
%): C, 15.92 (15.95); H, 0.91 (0.95); N, 2.63 (2.66); sele
R data (KBr): 2077 [ν(CO), cm−1], 1696 [ν(CHO), cm−1].

5c: Yield: 94%; Anal. found. (calcd.) for C7H5ClI2NO2Rh
%): C, 15.96 (15.95); H, 0.93 (0.95); N, 2.68 (2.66); sele
R data (KBr): 2088 [ν(CO), cm−1], 1714 [ν(CHO), cm−1].

.2. Kinetic experiment

The kinetic experiments of OA reactions of comple
a–1c with CH3I were monitored by using IR spectrosco

n a solution cell (1.0 mm path length). Ten milligrams
omplexes1a–1cwere added to 1 cm3 of neat CH3I at r.t. An
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aliquot of the reaction mixture was transferred by a syringe
into the IR cell. Then kinetic measurements were made by
monitoring the simultaneous decay of lower energyν(CO)
band of complexes1a–1c in the range 2010–2025 cm−1 and
increasing the acylν(CO) band in the range 1705–1720 cm−1

of [Rh(CO)(COCH3)ClIL]. A series of spectra were taken at
a regular time intervals.

2.3. Carbonylation of methanol using [Rh(CO)2ClL], L
= Py-2-CHO, Py-3-CHO and Py-4-CHO as catalyst
precursors

In the catalytic reactor a mixture of methanol (0.099 mol,
4 cm3), CH3I (0.016 mol, 1 cm3), H2O (0.055 mol, 1 cm3)
and complexes1 (0.054 mmol) were placed. The reactor was
then purged with CO for about 5 min and then pressurized
with CO gas (20 bar at r.t., 0.080 mol). The carbonylation
reactions were carried out at 130± 2◦C for 1 h. The products
were collected and analyzed by GC.

3. Results and discussion

3.1. Synthesis and characterization of [Rh(CO)2ClL] (1)
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a 10.09
b 9.49
c 10.12
1 11.05
1 10.12
1 10.07
2 10.04 2
2 10.06 8
2 10.03 5

CO in the rangeδ 180–188 ppm, aldehydic CO in the
rangeδ 192–196 ppm and pyridine carbon in the rangeδ

150–159 ppm,δ 125–127 ppm,δ 135–142 ppm for C2, C3
and C4, respectively (Table 1).

3.2. Reactivity of the [Rh(CO)2ClL] complexes

The complexes1a–1care coordinatively unsaturated[30]
and undergo OA reaction with different types of electrophiles
such as CH3I, C2H5I, C6H5CH2Cl and I2. The alkyl and halo
groups can occupy coordination sitestrans- or cis- to each
other depending upon the stereochemical requirement. Thus,
there may be several possible hexa-coordinated intermedi-
ates which will undergo alkyl migratory insertion reaction
to yield final acyl products (Scheme 1). The OA of CH3I
with complexes1 gives five-coordinated rhodium(III) acyl
complexes of the type [Rh(CO)(COCH3)ClIL] ( 2) which
are probably formed through unisolable hexa-coordinated
intermediates. The IR spectra of the complexes2a–2c show
two different types ofν(CO) bands in the range 2070–2080
and 1700–1720 cm−1 attributable to terminal and acyl
carbonyl groups, respectively[2,20–25]. The higher values
of the terminalν(CO) bands indicate the formation of the
oxidized products. As most of the five-coordinated carbonyl-
Rh(III)-acyl complexes reported are square-pyramidal in
nature[31–33], it is likely that the acyl complexes2a–2c
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The dimeric complex [Rh(CO)2Cl]2 undergoes a bridg
plitting reaction with two molar equivalent of t
yridine-aldehyde ligands to give the complex of the t
Rh(CO)2ClL] (1), where L = Py-2-CHO (a), Py-3-CHO
b), Py-4-CHO (c). The IR spectra of the complexes1a–1c
xhibits two equally intenseν(CO) bands in the rang
012–2095 cm−1 indicatingcisdisposition of the two term
al carbonyl groups[27–29]. 1H NMR spectra of the com
lexes1a–1b exhibit a doublet in the regionδ 8.93–8.98 ppm

or H1 and a multiplet in the regionδ 7.19–7.73 ppm andδ
.68–8.45 ppm for H2 and H3 protons, respectively (Table 1)
f the pyridine. The complex1c shows a doublet of dou
let in the rangeδ 7.83–8.97 ppm for H1 and H2 of th
yridine. The complexes1a–1c exhibit a singlet in the re
ion δ 10.07–11.05 ppm for the substituted aldehydic

on of the pyridine.13C NMR spectra of the complex
a–1c show characteristic resonances of terminal carb

able 1
MR (1H, 13C) data of the complexes

omplex/ligands 1H NMR δ (ppm)

H1 H2 H3 C

8.82 (d) 7.60–7.30 (m) 7.98–7.92 (m)
8.43 (d) 7.35–7.26 (m) 7.54–7.51 (m)
8.90 (d) 7.75–7.47 (m) –

a 8.93 (d) 7.67–7.19 (m) 7.88–7.68 (m)
b 8.98 (d) 7.73–7.69 (m) 8.45–8.37 (m)
c 8.97 (d) 7.85–7.83 (m) –
a 9.62(d) 7.92–7.19 (m) 8.32–8.19 (m)
b 8.66 (d) 7.49–7.45 (m) 7.65–7.62 (m)
c 9.01(d) 8.89 (d) –
13C NMR δ (ppm)

CH3 C-2 C-3 C-4 CO CHO (CO)acyl CH3

– 151 120 136 – 192 – –
– 150 120 135 192 – –
– 150 121 140 190 – –
– 150 125 135 180 196 – –
– 159 127 140 182 193 – –
– 153 125 142 188 192 – –
2.67 153 129 139 182 194 206 5
2.92 160 124 136 187 190 205 4
3.44 155 130 145 188 195 206 5

ould also have a similar geometry. The presence of a s
igh terminalν(CO) value is consistent with CO grouptrans

o a weaktransinfluencing chloride[31]. On the other hand
he hightrans influencing nature of the acetyl group fav
trong trans directing iodine in itstrans position [31,32].
herefore, the most probable structure of the acyl com

2a–2c) is represented by (b′) (Scheme 1). Chauby et a
34] reported that cationic rhodium(III) complex in gene
how much higher value ofν(CO) bands for, e.g. 2118 a
087 cm−1 in [Cp*Rh(CO)2Me]+, therefore, it is probab

hat the acyl complexes reported in this communication
ot cationic in character.

1H NMR spectra of the complexes2a–2c show a single
n the regionδ 2.67–3.44 ppm (Table 1) indicating the for

ation of acyl group.13C NMR spectra of the complexes
he type [Rh(CO)(COCH3)ClIL] show five different types o
haracteristic resonances: they are terminal carbonyl C



56 N. Kumari et al. / Journal of Molecular Catalysis A: Chemical 222 (2004) 53–58

Scheme 1.

the rangeδ 182–188 ppm, aldehydic CO atδ 190–195 ppm,
acyl CO atδ 205–206 ppm, methyl carbon in the rangeδ

48–55 ppm and pyridine carbon in the rangeδ 153–160 ppm,
δ 124–130 ppm andδ 136–145 ppm for C2, C3 and C4, re-
spectively. Similarly, complexes1a–1c undergo OA reac-
tions with C2H5I exhibiting five-coordinated rhodium(III)
acyl species [Rh(CO)(COC2H5)ClIL] ( 3). The complexes
3a–3c show characteristicν(CO) bands for the terminal and
acyl group in the range 2065–2072 and 1703–1710 cm−1, re-
spectively. The OA reactions with C6H5CH2Cl also produce
a similar type of complexes [Rh(CO)(COCH2C6H5)Cl2L]
(4) which exhibit two different types ofν(CO) bands in the
range 2047–2079 and 1657–1714 cm−1 corresponding to ter-
minal and acyl carbonyl group. I2 reacts oxidatively with
complexes1a–1c to form the complexes [Rh(CO)ClLI2] (5)
which exhibit only one terminal characteristicν(CO) band of
rhodium(III) complex in the region 2075–2088 cm−1. Due to
solubility problem, the NMR spectra of the complexes3–5
were not possible to determine.

3.3. Kinetic study of OA reaction of the complexes1with
CH3I

The OA reaction of alkyl halide to the metal center is the
key rate-determining step in the metal complex-catalyzed car-
b -
t icity
o teric
a ac-
c -
s etal

center at the methyl carbon to displace iodide and form a
metal carbon bond and subsequently the iodide forms a co-
ordination bond with the metal to form hexa-coordinated in-
termediate. Depending upon the stereochemical requirement
of the intermediate complex, the alkyl and iodide ligands can
be placed mutuallycis or trans in the intermediate[34]. In
order to understand the steric, electronic and the positional
effects of the substituent at the pyridine ligand on the OA
reactions of CH3I with the complexes1a–1c, a kinetic study
was carried out.

The reaction kinetics was monitored by following the si-
multaneous decay of theν(CO) absorption (lower value) in
the region 2010–2025 cm−1 for the complexes1a–1c and
the formation of acylν(CO) in the region 1705–1720 cm−1

for the complexes2a–2c. During the course of the OA re-
actions, a series of IR spectra were recorded in a definite
time intervals.Fig. 1shows a plot of decrease in intensity of
the terminalν(CO) bands for complexes1a–1cagainst time.
From the plot, it has been observed that for all the complexes
1a–1c the OA reactions follow a two-stage kinetics, an initial
slow step followed by a faster one till the end of reaction.
In case of complex1a, the slow step proceeds up to a pe-
riod of about 15 min and thereafter proceeds exponentially.
However, for complexes1b and1c this slow step continues
up to a period of about 310 and 295 min, respectively, and
t two-
s een
t h(III)
a e
t the
g
n The
t
a
b
ν ac-
c lex
i d of
1 ter-

F
t

onylation of alcohol[16,20–25,35,36]. The oxidative reac
ivity of the metal complexes depends on the nucleophil
f the metal center, which in turn depends upon the s
nd electronic characteristics of the ligand. It is widely
epted that the OA reaction of CH3I proceeds through two
tep mechanism involving nucleophilic attack of the m
hen proceeds in an exponential manner. The observed
tage kinetics may be due to an initial equilibrium betw
he parent complex and a hexa coordinate unisolable R
lkyl intermediate (Scheme 1). It is worth to mention her

hat a similar type of kinetics was also observed from
rowth of the acyl band at around 1705–1720 cm−1. The ki-
etics of OA is complicated as revealed from IR data.

wo-terminalν(CO) bands of the parent complex1a at 2088
nd 2014 cm−1 are gradually replaced by the acyl complex2a
ands at 2073 (terminalν(CO) band) and 1735 cm−1 (acyl
(CO) band). The entire course of the OA reactions is
ompanied by the formation of different types of comp
ntermediates as evidenced from IR data. Up to a perio
5 min of the OA reaction, there is very little change in

ig. 1. The decay of the terminalν(CO) band in the complexes1a–1cduring
he OA reaction with CH3I against time.
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minalν(CO) bands and only the intensity of the lowerν(CO)
band at 2014 cm−1 is slightly reduced. During 30-min reac-
tion time, the parentν(CO) bands shift to lower region with
broad bands at 2076 and 2013 cm−1, but the intensity of the
former remains almost unchanged while the latter one exhibit
reduced intensity along with appearance of another three new
bands at 2028, 2000 and 1735 cm−1 which (former two) are
due to terminalν(CO) bands and the remaining one is due to
acyl ν(CO) band. Thus it indicates clearly that a mixture of
complex intermediates are formed. With the progress of the
reaction up to about 60 min, a sharp and very strong band ap-
pears at 2075 cm−1 and the band at 2013 cm−1 shows much
reduced intensity. The bands at 2028 and 2000 cm−1 show
almost the same intensity while the acyl band at 1735 cm−1

exhibits higher intensity indicating the enhancement of con-
centration of the acyl complex in the mixture. During 75 min
reaction time, the intensity of acyl band at 1735 cm−1 in-
creases while the band at 2075 cm−1 remains unaltered. The
intensity of bands at 2028, 2013 and 2000 cm−1 starts de-
creasing indicating depletion of the intermediate complexes.
With the progress of the reaction, the band at 2075 cm−1

shows no change accompanied with increase in intensity of
the acyl band at 1735 cm−1, while the other bands are almost
vanished indicating almost depletion of the intermediates.
During 275-min reaction, only two intense bands at 2074 and
1 −1 ter-
m erva-
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Table 3
Result of carbonylation of methanol in the presence of complex1 as catalyst
precursors at 130± 2◦C and 35± 3 bar pressure for 1 h

Catalyst AcOH (%) AcOMe (%) Total conversion (%) TONa

[Rh(CO)2Cl]2 3.34 30.74 34.04 653
1a 12.89 51.89 64.72 1243
1b 3.9 28.7 32.6 626
1c 6.6 35.1 41.7 801

a TON: mole of product per mole of catalyst.

non-conventional secondary interaction[35] and thus over-
coming the sterical hindrance. To substantiate the study by
X-ray crystal structure determination was not possible be-
cause no suitable crystals could be developed. The complex
1c is sterically less hindered to be attacked by the CH3I com-
pared to that of the complex1b and therefore, the rate of OA
reaction for the complex1c is higher than1b.

3.4. Catalytic activity

The results of carbonylation of methanol to acetic acid
and its ester in the presence of the complexes1a–1cas cata-
lyst precursors are shown inTable 3. It appears fromTable 3
that the highest TON 1243 (total conversion 64.7%) and the
lowest TON 626 (total conversion 32.6%) were found for the
complexes1aand1b, respectively, while complex1cshows
a moderate TON 801 (total conversion 41.7%), therefore, the
efficacy follows the order1a > 1c > 1b. On the other hand,
the commercial species shows TON only 653 (total conver-
sion 34.0%). Therefore, the advantage of the complex1a as
catalyst is obvious over the rest of the species. The efficacy
trend of the complexes towards carbonylation could not be ex-
plained based on the donor capability of the ligands because
the presence of electron-withdrawing –CHO group at the 2-
and 4-positions of the pyridine ring of the ligands should
r nd to
l ol,
t her
t om
o
i llows
t id dif-
f rate
o

A

Re-
g kind
p P.C.
B hat,
f f Sci-
e nal,
N B),
M ac-
735 cm are observed indicating transforming all the in
ediates to a single acyl complex. Thus, the above obs

ions corroborate the formation of different unstable inter
iates during the progress of the OA reactions as indicat
cheme 1.
The reaction was found to be first order in both CH3I and

he complexes[7]. Kinetic measurements were done by
lying pseudo-first-order condition, i.e. at high concentra
f CH3I. A plot is made for lnA0/At versus time, whereA0
ndAt are the absorbance at timet = 0 andt, respectively. A

wo-stage linear fit, each of pseudo-first-order is observe
he entire course of OA reaction with CH3I. From the slop
f the plot, the rate constants for both the stages of the
eactions were calculated and the values ofkobsare shown in
able 2. In general, the second-stage reactions are faste
hat of the first stage by about 80–100 times.

Table 2reveals that the overall rate of OA reaction
he complexes follows an order1a > 1c > 1b. The high re
ctivity of complex1a over 1b and 1c may be due to th
nhancement of nucleophilicity on the metal center by
eighboring group effect[37] where the 2-substituted ald
ydic group probably interacts with the metal center by s

able 2
hekobs values for the OA reactions of complexes1a–1cwith CH3I

omplex kobs (s−1)

First stage Second sta

a 8.33× 10−6 1.5× 10−4

b 0.50× 10−6 0.90× 10−4

c 1.17× 10−6 1.22× 10−4
educe the basicity of the N-atom and consequently te
ower the catalytic activities. In carbonylation of methan
he OA of CH3I is the rate-determining step, and the hig
he rate of OA reaction, higher is the catalytic activity. Fr
ur kinetic study of OA reaction of CH3I with complexes1

t has been observed that the rate of OA reaction also fo
he same order as mentioned above. Therefore, the sa
erence in reactivity is due to the observed difference in
f OA reactions (vide supra).
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